ロダニン骨格で共役したベンゾチオフェノン誘導体の合成と色素増感太陽電池への応用

小林 進太郎*1, 岩田 理*2, 田中 潔*3

Synthesis of Rhodanine-conjugated Benzothiophenones and Their Applications to Dye-sensitized Solar Cells

Shintaro KOBAYASHI*1, Satoru IWATA*2, Kiyoshi TANAKA*3,

(Received September 12, 2011)

1. はじめに

近年、早急な環境問題の対策が求められる中、化石燃料に代わるクリーンエネルギーに注目が集まっている。 その中で太陽電池は大きな期待のかかる一分野で、シリコン太陽電池が主流となっている。色素増感太陽電池^[1] は光触媒としても知られているTiO₂と色素を用いる電池 であり、シリコン太陽電池に比べ、製造コストの削減が可能である。

2. 目 的

本研究では色素増感太陽電池を指向した、メタルフリー 新規色素の合成に取り組んだ。分子軌道計算を用いて、ア クセプター基にロダニン - ベンゾチオフェノン新規骨格 を持つT021とT022を設計・合成した。さらに、比較検討 のためロダニン骨格を2つ持つDR01とDR02も合成した。

これらの色素を用いて電池を作製し、電池の性能評価、 及び、新規骨格の特性を明らかにすることを目的とした。

^{*1:}理工学研究科理工学専攻修士学生

*3: 共通基礎 教授 (tanaka@st.seikei.ac.jp)

3. 合 成

Scheme 1 に従い**T021** と**T022** および**DR01** と**DR02** の合成を行った。各段階の収率はScheme 1 中に示した。

T022において、前駆体のエステルから酸性加水分解に よりカルボン酸を得ようとしたが、目的物質を得ること はできなかった。原因として、電子供与性のジエチル基 が色素の安定性を損なっていることが考えられる

Scheme 1 Synthesis of dyes; (i)BrCH₂COOH, K₂CO₃ / acetone, HCl / H₂O; (ii)SOCl₂, DMF, AlCl₃ / 1,2-dichloroethane; (iii)SCNCH₂COOEt, DBU / acetonitrile, BrCH₂COOEt; (iv)R₂NC₆H₄CHO, piperidine / toluene; (v)HCl / AcOH.

^{*2:} 共通基礎 助教 (iwata@st.seikei.ac.jp)

4. 各色素の吸収波長

T021、DR01、DR02 について、溶液中のUV-visスペク トルを測定した(Fig. 2)。**T021**は**DR01、DR02** 色素に比 べて、ややモル吸光係数が小さいものの、長波長領域に 吸収極大があることが分かった(Table 1)。

Fig. 2 UV-vis spectra of TO21, DRO1, and DRO2in MeCN / t-BuOH = 1 : 1 (1.0 × 10⁻⁵M).

Table 1 UV-vis properties of TO21, DR01, and DR02

Dye	$\lambda_{\max}(nm)$	$\varepsilon (M^{-1}cm^{-1})$	
T021	513	2.33×10^{4}	
DR 01	496	3.13×10^{4}	
DR02	511	5.07×10^{4}	

5. 電池の測定

導電性ガラスにアナターゼ型TiO₂を塗布、焼成した。 次に色素溶液に浸して色素を吸着させ、基板をPt対極で 挟み、間を電解質で充たし、電池セルを作製した。

合成した色素を用いた電池セルを疑似太陽光光源 (AM1.5G)で光照射して、電流-電圧曲線を測定した。 電流密度に換算したJ-V曲線をFig.3に、電池特性データ をTable 2に示した。

T021は**DR01、DR02** 色素に匹敵する開放電圧(V_∞)と フィルファクター(FF)を示すが、短絡電流(J_{sc})がやや低い ことが分かった。この原因として**T021**のモル吸光係数が **DR01、DR02** 色素に比べて小さいことが考えられる。

Fig. 3 J-V Curves of cells sensitized by TO21, DR01, and DR02.

Table 2 Photovoltaic performances of dye-sensitized cells

Dye	Voc(V)	J _{sc} (mA/cm ²)	FF	η (%)
T021	0.564	7.90	0.61	2.7
DR 01	0.580	10.05	0.53	3.1
DR02	0.523	10.44	0.58	3.2

6. IPCE特性

IPCEとはある波長において入射した光子が電子へ変換される割合を%で表したもので、照射する光の波長を 連続的に変化させながらセルの起電力を測定するもので ある。このスペクトルより、T021が300-700nmの広領域 において光子 - 電子変換が行われていることが分かる。 最大の効率は49% (520nm)であった。

また、色素をTiO2 基板に吸着させた時の吸収スペクト ルは溶液のスペクトルと比べブロード化し、より長波長 領域の光も吸収していることが分かった。

Fig. 4 IPCE spectra of T021-cell(---), UV-vis spectra of T021 on TiO₂(···) and in solution (----).

7. まとめ

本研究では、ロダニン-ベンゾチオフェノン骨格を有 する新規色素(T021)の特性を明らかにした。従来のダ ブルロダニン骨格を有する色素(DR01、DR02)より吸収 波長を長波長側にシフトさせることに成功した。また、 IPCEスペクトルより、非常に幅広い波長において、最高 値 49%に及ぶ、光子 - 電子変換が行われていることが観 測された。光電流特性を測定したところ、T021 はダブル ロダニン色素DR01、DR02 に匹敵する開放電圧値、フィ ルファクター値を得ることができた。新たな置換基を導 入することで、モル吸光係数が増大されれば、この新規 骨格の有用性をさらに発揮できるものと考える。

参考文献

[1] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, *Chem. Rev.*, 2010, **110**, 6595.