SEIKEI University Repository >
01:紀要(Bulletin) >
11:理工学研究報告 >
第55巻第1号 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10928/1082
|
タイトル: | ウェブスターのホーン方程式における摂動論による高精度計算手法 |
その他のタイトル: | Highly Accurate Perturbative Method for Webster's Horn Equation |
著者: | 濱野, 慶太 坂本, 昇一 富谷, 光良 HAMANO, Keita SAKAMOTO, Shoichi TOMIYA, Mitsuyoshi |
キーワード: | Webster's Horn Equation Perturbation Theory Brass Instruments High Accuracy Solutions |
発行日: | 2018年6月1日 |
出版者: | 成蹊大学理工学部 |
抄録: | Applying mathematical and quantum mechanical techniques, this study develops numerical solutions to Webster's horn equation, which describes the sound inside brass instruments in acoustics. The wavenumbers and wave functions of the modes in the system are evaluated by perturbation theory, assuming a solvable system with relatively small perturbations. An obvious solvable example is a straight pipe, whose wavenumbers can be perturbed by varying the radius of the horn. Maintaining the second-order corrections, the method generated astonishingly accurate results for varying horn shapes. Moreover, in tests of various pipe shapes, the perturbation method required far fewer computational resources than the finite element method. Two analytically solvable shapes and two non-solvable models (one of them is a periodic shape described by a trigonometric function) are analyzed. The results imply the applicability of the method to highly non-solvable systems. |
URI: | http://hdl.handle.net/10928/1082 |
出現コレクション: | 第55巻第1号
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|