SEIKEI University Repository >
01:紀要(Bulletin) >
11:理工学研究報告 >
第54巻第2号 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10928/973
|
タイトル: | ニューラルネットワークによる太陽風物理量を用いた地磁気擾乱指数の予測 |
その他のタイトル: | Prediction for Geomagnetic Disturbances with the Solar Wind Parameters Based on Neural Computational Technique |
著者: | 北島, 良三 野和田, 基晴 上村, 龍太郎 Kitajima, Ryozo Nowada, Motoharu Kamimura, Ryotaro |
キーワード: | geomagnetic disturbances solar wind space weather potential learning neural networks |
発行日: | 2017年12月 |
出版者: | 成蹊大学理工学部 |
抄録: | We try to determine what solar wind parameter has an impact on the geomagnetic disturbance based on neural computational method “potential learning (PL)”. In our previous study, using the PL method, the clock angle, which is the angle between the dawn — dusk (By) and north — south (Bz) components of solar wind magnetic field, was extracted as the most significant parameter to disturb the geomagnetic field. However, that result included a little uncertainty due to redundancy of parameters. Therefore, we scrutinize the solar wind parameters to evaluate with the PL method, and retry to extract the parameters to provide an impact on geomagnetic disturbances. We could find that the clock angle, solar wind dynamic pressure and number density impinged on magnetospheric disturbances. These parameters are important in considering geomagnetic disturbances. Our result suggests that the potential learning method is very useful tool to study the solar wind-driven geomagnetic disturbances. |
URI: | http://hdl.handle.net/10928/973 |
出現コレクション: | 第54巻第2号
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|